
Convolutional Neural Networks for Toxic Comment
Classification

Spiros V. Georgakopoulos
Department of Computer Science and Biomedical

Informatics, University of Thessally
Lamia, Greece

spirosgeorg@uth.gr

Sotiris K. Tasoulis
Department of Computer Science and Biomedical

Informatics, University of Thessally
Lamia, Greece

stas@uth.gr

Aristidis G. Vrahatis
Department of Computer Science and Biomedical

Informatics, University of Thessally
Lamia, Greece

agvrahatis@upatras.gr

Vassilis P. Plagianakos
Department of Computer Science and Biomedical

Informatics, University of Thessally
Lamia, Greece

vpp@uth.gr

ABSTRACT
Flood of information is produced in a daily basis through the
global internet usage arising from the online interactive com-
munications among users. While this situation contributes
significantly to the quality of human life, unfortunately it in-
volves enormous dangers, since online texts with high toxicity
can cause personal attacks, online harassment and bullying
behaviors. This has triggered both industrial and research
community in the last few years while there are several tries
to identify an efficient model for online toxic comment predic-
tion. However, these steps are still in their infancy and new
approaches and frameworks are required. On parallel, the data
explosion that appears constantly, makes the construction
of new machine learning computational tools for managing
this information, an imperative need. Thankfully advances
in hardware, cloud computing and big data management al-
low the development of Deep Learning approaches appearing
very promising performance so far. For text classification in
particular the use of Convolutional Neural Networks (CNN)
have recently been proposed approaching text analytics in a
modern manner emphasizing in the structure of words in a
document. In this work, we employ this approach to discover
toxic comments in a large pool of documents provided by
a current Kaggle’s competition regarding Wikipedia’s talk
page edits. To justify this decision we choose to compare
CNNs against the traditional bag-of-words approach for text
analysis combined with a selection of algorithms proven to
be very effective in text classification. The reported results
provide enough evidence that CNN enhance toxic comment
classification reinforcing research interest towards this direc-
tion.

KEYWORDS
Convolutional Neural Networks, CNN for Text Mining, Text
Classification, Text mining, Toxic Text Classification, Word
Embeddings, word2vec

1 INTRODUCTION
Daily, we receive an avalanche of short text information from
the explosion of online communication, e-commerce and the
use of digital devices [21]. This volume of information re-
quires text mining tools to perform a number of document
operations in a timely and appropriately manner. Text classi-
fication is a classic topic for natural language processing and
an essential component in many applications, such as web
searching, information filtering, topic categorization and sen-
timent analysis [1]. Text classification can be defined simply
as follows: Given a set of documents D and a set of classes
(or labels) C, define a function F that will assign a value from
the set of C to each document in D [17]. As a result, a huge
pool of machine learning methodologies have been applied
for text classification in various data types with satisfactory
results. Nowadays, information is usually in short texts such
as social networks, news in web pages, forums and so on. How-
ever, short texts collections, having the limitation of short
length documents, end up represented by sparse matrices,
with minimal co-occurrence or shared context. As a result,
defining efficient similarity measures is not straightforward,
especially regarding the most popular word-frequency based
approaches, resulting in degrading performance [19].

Recently, Convolutional Neural Networks (CNN) are being
applied to text classification or natural language processing
both to distributed as to discrete embedding of words [4, 12],
without using syntactic or semantic knowledge of a language
[10]. Indicatively, the work of Zhang et al. [24] offers an empir-
ical study on character-level convolutional networks for text
classification providing evidences that CNN using character-
level features is an effective method. Also, a recurrent CNN
model was proposed recently for text classification without
human-designed features [14] by succeeding to outperform
both the CNN model as well as other well-established classi-
fiers. Their model captures contextual information with the
recurrent structure and constructs the representation of text
using a convolutional neural network. Meanwhile, CNN has
been shown an alternative mechanism for effective use of word
order for text categorization [10]. An effective CNN based
model using word embeddings to encode texts is published

ar
X

iv
:1

80
2.

09
95

7v
1

 [
cs

.C
L

]
 2

7
Fe

b
20

18

recently [25]. It uses semantic, embeddings, sentiment embed-
dings and lexicon embeddings for texts encoding, and three
different attentions including attention vector, LSTM (Long
Short Term Memory) attention and attentive pooling are
integrated with CNN model. To improve the performance of
three different attention CNN models, CCR (Cross-modality
Consistent Regression) and transfer learning are presented.
It is worth noticing that CCR and transfer learning are used
in textual sentiment analysis for the first time. Finally, some
experiments on two different datasets demonstrate that the
proposed attention CNN models achieve the best or the
next-best results against the existing state-of-the-art models.

Toxic Comment Discovery. Text arising from online inter-
active communication hides many hazards such as fake news,
online harassment and toxicity [5]. Toxic comment is not only
the verbal violence but a comment that is rude, disrespectful
or otherwise likely to make someone leave a discussion. Toxic
comment can be considered also the personal attack, the
online harassment and bullying behaviors. Unfortunately, it
is a usual phenomenon in the world of web and causes several
problems and with the rise of social media platforms and
the explosion of online communication, the risk is increased.
Indicatively, the Wikimedia foundation found that 54% of
those who had experienced online harassment expressed de-
creased participation in the particular project which occurred
[23]. Also, a 2014 Pew Report highlights that 73% of adult
internet users have seen someone harassed online, and 40%
have personally experienced it [5]. Although, there are ef-
forts to enhance the safety of online environments based on
crowdsourcing voting schemes or the capacity to denounce a
comment, in most cases these techniques are inefficient and
fail to predict a potential toxicity [9].

Automatic toxic comment identification and prediction in
real time is of paramount importance, since it would allow
the prevention of several adverse effects for internet users.
Towards this direction, the work of Wulczyn et al. [23] pro-
posed a methodology that combines crowdsourcing and ma-
chine learning to analyze personal attacks at scale. Recently,
Google and Jigsaw launched a project called Perspective [9],
which uses machine learning to automatically detect online
insults, harassment, and abusive speech. Perspective is an
API (www.perspectiveapi.com) that enables the developers
to use the toxic detector running on Google’s servers, to iden-
tify harassment and abuse on social media or more efficiently
filtering invective from the comments on a news website. The
API uses machine learning models to score the perceived
impact a comment might have on a conversation. Developers
and publishers can use this score to give realtime feedback to
commenters or help moderators do their job, or allow readers
to more easily find relevant information, as illustrated in two
experiments below.

A main limitation of these models is that they are not
as reliable as it should and that usually the degree of toxi-
city is not determined. The latter is depicted on a Kaggle
competition. Kaggle is a platform for predictive modelling
and analytics competitions in which statisticians and data

miners compete to produce the best models for predicting
and describing the datasets uploaded by companies and users.
In this work we employ the dataset provided by the current
Kaggle challenge on toxic comment classification in an at-
tempt to investigate whether the recent emergence of CNN in
text mining, using word embeddings to encode texts, provide
any significant benefit over the traditional approaches for
classification accompanied by Bag-of-Words (BoW) represen-
tations.

The rest of the paper is organized as follows. In Section 2
we present the details of the CNN’s based approach for text
classification while in Section 3 we describe text prepossessing
based on the Bag-of-Words model; for text analysis. Section 4
is devoted to the experimental evaluation. Finally, Section 5
contains concluding remarks and pointers for future work.

2 CONVOLUTIONAL NEURAL NETWORKS
In this section, we outline the Convolutional Neural Networks
for classification and also provide the process description for
text classification in particular. Convolutional Neural Net-
works are multistage trainable Neural Networks architectures
developed for classification tasks. Each of these stages, consist
the types of layers described below [6, 15]:

(1) Convolutional Layers, are major components of the
CNNs. A convolutional layer consists of a number of
kernel matrices that perform convolution on their input
and produce an output matrix of features where a bias
value is added. The learning procedures aim to train the
kernel weights and biases as shared neuron connection
weights.

(2) Pooling Layers, are also integral components of the
CNNs. The purpose of a pooling layer is to perform
dimensionality reduction of the input feature images.
Pooling layers make a subsampling to the output of
the convolutional layer matrices combing neighboring
elements. The most common pooling function is the
max-pooling function, which takes the maximum value
of the local neighborhoods.

(3) Embedding Layer, is a special component of the CNNs
for text classification problems. The purpose of an
embedding layer is to transform the text inputs into a
suitable form for the CNN. Here, each word of a text
document is transformed into a dense vector of fixed
size.

(4) Fully-Connected Layer, is a classic Feed-Forward Neu-
ral Network (FNN) hidden layer. It can be interpreted
as a special case of the convolutional layer with kernel
size 1 × 1. This type of layer belongs to the class of
trainable layer weights and it is used in the final stages
of CNNs.

The training of CNN relies on the BackPropagation (BP)
training algorithm [15]. The requirements of the BP algorithm
is a vector with input patterns 𝑥 and a vector with targets
𝑦, respectively. The input 𝑥𝑖 is associated with the output
𝑜𝑖. Each output is compared to its corresponding desirable

2

target and their difference provides the training error. Our
goal is to find weights that minimize the cost function

𝐸𝑤 =
1
𝑛

𝑃

𝑝=1
𝑁𝐿

𝑗=1
𝑜𝐿

𝑗,𝑝 − 𝑦𝑗,𝑝
2, (1)

where 𝑃 the number of patterns, 𝑜𝐿
𝑗,𝑝 the output of j

neuron that belongs to 𝐿 layer, 𝑁𝐿 the number of neurons in
output layer, 𝑦𝑗,𝑝 the desirable target of 𝑗 neuron of pattern
𝑝. To minimize the cost function 𝐸𝑤, a pseudo-stochastic
version of SGD algorithm, also called mini-batch Stochastic
Gradient Descent (mSGD), is usually utilized [2].

2.1 CNN for Text Classification
The CNN have been widely applied to image classification
problems due to their inner capability to exploit the two
statistical properties that characterize image data, namely
‘local stationarity’ and ‘compositional structure’ [8]. Local
stationarity structure can be interpreted as the attribute of
an image to present dependency between neighboring pixels
that is reasonably constant in local image regions. Local
stationarity is exploited by the CNNs’ convolution operator.

We may claim that for text classification problems the
original raw data also present the aforementioned statisti-
cal properties based on the fact that neighboring words in
a sentence present dependency, however, their processing
is not straight forward. The components of an image are
simply pixels represented by integer values within a specific
range. On the other hand the components of a sentence (the
words) have to be encoded before fed to the CNN [3]. For
this purposed we may use a vocabulary. The vocabulary is
constructed as an index containing the words that appear in
the set of document texts, mapping each word to an integer
between 1 and the vocabulary size. An example of this proce-
dure is illustrated in Figure 1. The variability in documents
length (number of words in a document) need to be addressed
as CNNs require a constant input dimensionality. For this
purpose the padding technique is adopted, filling with zeros
the document matrix in order to reach the maximum length
amongst all documents in dimensionality.

In the next step the encoded documents are transformed
into matrices for which each row corresponds to one word.
The generated matrices pass through the embedding layer
where each word (row) is transformed into a low-dimension
representation by a dense vector [7]. The procedure then
continues following the standard CNN methodology. At this
point, it is worth mentioning that there are two approaches
for the low-dimension representation of each word. The first
approach called ‘randomized’ which is achieved by placing
a distribution over the word, producing a dense vector with
fixed length. The values of the vectors are tuned via the train-
ing process of the CNN. The other very popular approach
also evaluated here is to employ fixed dense vectors for words,
which have produced based on word embedding methods such
as the word2vec [16] and GloVe [18]. In general the word
embedding methods have been trained on a large volume
dataset of words producing for each word a dense vector with

Good work
Well done

Could have done better

Good work
Well done

Could have done better

Good work
Well done

Could have done better

doci: Work better
docj: Well done
dock: Could have done

better

doci: [I1 I2 0 0]
docj: [I3 I4 0 0]
dock: [I5 I6 I4 I2]

Work = I1

Better = I2

Well = I3

Done = I4

Could = I5

Have = I6

Vocabulary
Production

Data Encoding
via Vocabulary

Figure 1: Example of encoding a text using a vocabulary

Could have
done better

I5
I6
I4
I2

Convolutional
Layer

+
Max Pooling

Convolutional
Layer

+
Max Pooling

Convolutional
Layer

+
Max Pooling

Filter Size 3

Filter Size 4

Filter Size 5

Feed-Forward
Layer

Raw Data
Input

Data Encoding
+

Matrix Row

Output
Layer

0.2 0.3 0.20.3 0.20.3

0.2 0.1 0.20.1 0.20.1

0.1 0.3 0.10.3 0.10.3

0.4 0.3 0.20.4 0.20.4

Embedding
Layer

Figure 2: The CNN for text classification process.

a specific dimension and fixed values. The word2vec embed-
ding method for example, has been trained on 100 billion
words from Google News producing a vocabulary of 3 million
words. The embedding layer matches the input words with
the fixed dense vector of the pre-trained embedding methods
that have been selected. The values of these vectors do not
change during the training process, unless there are words not
already included in the vocabulary of the embedding method
in which case they are initialized randomly. An indicative
description of the process is illustrated in Figure 2.

3 BAG-OF-WORDS FOR TEXT MINING
Although word embeddings for text mining have attracted
the interest of research community lately, it is still not clear

3

enough how beneficial can this approach be in comparison
with tradition text mining approaches such as the BoW model.
A BoW model, is an alternative way of extracting features
from text that can later be used for any kind of analysis
such as classification. This representation of text describes
the occurrence of words within a document and for this
purpose it only involves a vocabulary of known words and
their corresponding measure of the presence. In contrast to
the model described in Section 2 any information about the
order or structure of words in the document is discarded in
this case. The model is only concerned about the occurrence
of words in the document and not where in the document
they occur. Despite the simplicity of this approach usually the
models that use it for text categorization and classification
tasks demonstrate good performance. Although theoretical
simple and practical efficient a BoW model involves several
technical challenges. The first step in a typical text analysis
procedure is to construct the Document-Term-Matrix (DTM)
from input documents. This is done by vectorizing documents
creating a map from words to a vector space. In the next
step a model for either supervised or unsupervised learning
is applied.

In what follows we provide the details of the DTM con-
struction for the toxic comment classification problem at
hand. We begin the procedure by generating the vocabu-
lary of words. Here we choose unique words appearing in
all documents ignoring case, punctuation, numbers and fre-
quent words that don’t contain much information (called stop
words). Then instead of scoring words based on the number of
times each word appears in a document we employ the Term
Frequency - Inverse Document Frequency (TF-IDF) method-
ology [20]. This way we avoid the problem of high scoring by
dominating words that usually do not contain ‘informational
content’. To achieve this the frequency of words is rescaled by
how often they appear in all documents by penalizing most
frequent words across all documents. The resulting scores
are a weighting indicating importance or interestingness of
words. TF-IDF have proven to be very successful for classifi-
cation tasks in particular by exposing the differences amongst
natural groups. In the final step of preprocessing we deal
with the sparsity problem. Sparse representations are usually
more difficult to model both for computational reasons and
also for information reasons, as so little information need to
be extracted from such a large representational space. Here
we choose to discard terms with higher that 99% sparsity
managing also to reduce the dimensionality of the DTM
significantly.

In an attempt to visually validate the resulting DTM we
employ two basic dimensionality reduction methods for vi-
sualizations. We employ Principal Component Analysis [11]
to produce a two dimensional projection and the popular
t-SNE [22] methodology for generating a two dimensional
embedding of the DTM (see figure 3). For the DTM con-
struction, samples has been selected according to the proce-
dure followed in the Experimental Analysis Section. In both
Figures points with different color correspond to samples
belonging to different classes. We observe cluster structures

TSNE1

TS
N
E2

PCA1

PC
A2 Class

no_toxic
toxic

Figure 3: Two dimensional representations of the constructed
DTM using PCA(right) and t-SNE(left) .

in both representations indicating appropriate circumstances
for a learning algorithm. The results of applying classifica-
tion methodologies on the resulting DTM are reported at the
following experimental results section

4 EXPERIMENTAL ANALYSIS
This section is devoted to the experimental evaluation of
the presented approaches. Word embeddings and CNN are
compared against the BoW approach for which four well-
established text classification methods namely Support Vec-
tor Machines (SVM), Naive Bayes (NB), k-Nearest Neighbor
(kNN) and Linear Discriminated Analysis (LDA) applied
on the designed DTMs. We evaluate the methods for toxic
comment detection employing the dataset provide by a cur-
rent Kaggle competition 1. The dataset contain comments
from Wikipedia’s talk page edits which have been labeled
by human raters for toxic behavior. Although there are six
types of indicated toxicity ‘toxic’, ‘severe toxic’, ‘obscene’,
‘threat’, ‘insult’, ‘identity hate’ in the original dataset, all
these categories were considered as toxic in order to con-
vert our problem to binary classification. Furthermore, for
more coherent comparisons, a balanced subset of the Kaggle
dataset is constructed for each evaluation of the aforemen-
tioned methods. This is achieved by random sub-sampling of
the non-toxic texts, obtaining a subset with equal number of
samples with the toxic texts. Subsequently,a random selec-
tion of the 80% of the resulting balanced dataset is used for
training and the rest for testing. In order to provide reliable
and robust inferences, each of the examined methods are
evaluated 20 times on such random separations.

The CNN architecture used here is based on the one pre-
sented in [13]. We use three different convolutional layers
simultaneously, with filter size width 128, dense vector dimen-
sion 300. The filters width is equal to the vector dimension
while their height was 3, 4 and 5, for each convolutional layer
respectively. After each convolutional layer a max-over-time
pooling operation [3] is applied. The output of the pooling
layer concatenate to a fully-connected layer, while the softmax
function is applied on final layer. The model is training using
the SGD algorithm with mini-batches set to 64 and learning
rate 0.005. Interestingly here we examine two variants of

1https://www.kaggle.com/c/jigsaw-toxic-comment-classification-
challenge

4

0.7

0.8

0.9

CNN−f CNN−r KNN LDA NB SVM

R
ec
al
l

0.7

0.8

0.9

CNN−f CNN−r KNN LDA NB SVM

F1
sc
or
e

0.7

0.8

0.9

CNN−f CNN−r KNN LDA NB SVM

Pr
ec
is
io
n

Method
CNNfix

CNNrand

KNN

LDA

NB

SVM

Figure 4: Box blots for Recall, Precision and F1 score across all experiments for all Classification Methods.

CNN approach, the 𝐶𝑁𝑁𝑟𝑎𝑛𝑑 where the representation of
the words initialized randomly and tuned during the CNN’s
training and the 𝐶𝑁𝑁𝑓𝑖𝑥 where we use the pre-trained, by
the word2vec model 2; low-dimensional representations of
the words. For SVM, NB and LDA we used the default pa-
rameters provided by the 𝑅 statistical packages e1071 and
MASS respectively. For kNN we choose to used a value of
𝑘 equal to 7 as a representative of general performance of
the method. Further parameter fitting could take place in
this part of the analysis for all methods but inevitably their
performance is dominated by the construction procedure of
the DTM, which has already been design considering classifi-
cation performance.

Finally we perform a statistical analysis on the outcomes
of the binary classification task for all methods. For this
purpose we may consider, (i) samples labeled as ‘toxic’ and
predicted as ‘toxic’ as True Positive (TP), (ii) samples labeled
as ‘toxic’ and predicted as ‘non-toxic’ as False Negative (FN),
(iii) samples labeled as ‘non-toxic’ and predicted as ‘non-toxic’
as True Negative (TN) and (iv) samples labeled as ‘non-toxic’
and predicted as ‘toxic’ as False Positive (FP).

A confusion matrix for each ’run’ was created by calculat-
ing values in main diagnostic tests such as, True positive rate
(Recall), Positive predictive value (Precision), F1 score (see
Figure 4), Accuracy, False discovery rate (FDR) and True
negative rate (Specificity) (see Table 1). It is evident that
both 𝐶𝑁𝑁𝑟𝑎𝑛𝑑 and 𝐶𝑁𝑁𝑓𝑖𝑥 models outperformed SVM,
kNN, NB and LDA methods in all cases achieving accuracy
almost over 90%. With respect to the toxic predictive value
(Precision), CNN models had values above 90% while other
methods range from 65 to 85 percent. Almost similar behavior
is observed in the True Positive Rate (Recall) and in F1-score.
NB and kNN methods had the worst results having the lowest
values on precision and recall respectively. This means that
kNN classifies several non-toxic comments as toxic and NB
classifies several toxic comments as non-toxic. Also, CNN
models has the lowest variance in all cases while 𝐶𝑁𝑁𝑓𝑖𝑥
has the best performance with respect to precision and recall.
Finally we observed that CNN models have the lowest False
Discovery Ratio, meaning that they mistakenly predicted
as ‘toxic’ the lowest number of ‘non-toxic’ comments. The
aforementioned findings state clearly that CNN outperforms

2https://code.google.com/archive/p/word2vec/

traditional text mining approaches for toxic comment classi-
fication presenting great potential for further development in
toxic comment identification.

Table 1: Mean values and Standard Deviation across all ex-
periments for Accuracy, Specificity and False discovery rate
for all Classification Methods.

Accuracy Specificity False disc.rate
Mean Std Mean Std Mean Std

𝐶𝑁𝑁𝑓𝑖𝑥 0.912 0.002 0.917 0.006 0.083 0.007
𝐶𝑁𝑁𝑟𝑎𝑛𝑑 0.895 0.003 0.906 0.015 0.092 0.017
kNN 0.697 0.008 0.590 0.016 0.335 0.010
LDA 0.808 0.005 0.826 0.010 0.179 0.009
NB 0.719 0.005 0.776 0.012 0.250 0.010
SVM 0.811 0.007 0.841 0.012 0.167 0.012

5 CONCLUSIONS
Both industrial and research community in the last few years
have made several tries to identify an efficient model for
online toxic comment prediction due to its importance in
online interactive communications among users, but these
steps are still in their infancy. This work is devoted to the
study of a recent approach for text classification involving
word representations and Convolutional Neural Networks. We
investigate its performance in comparison to more widespread
text mining methodologies for the task of toxic comment clas-
sification. As shown CNN can outperform well established
methodologies providing enough evidence that their use is
appropriate for toxic comment classification. The promising
results are motivating for further development of CNN based
methodologies for text mining in the near future, in our inter-
est, employing methods for adaptive learning and providing
further comparisons with n-gram based approaches.

ACKNOWLEDGMENTS
We gratefully acknowledge the support of NVIDIA Corpora-
tion with the donation of the Titan X Pascal GPU used for
this research.

5

REFERENCES
[1] Charu C Aggarwal and ChengXiang Zhai. 2012. A survey of text

classification algorithms. In Mining text data. Springer, 163–222.
[2] LÃľon Bottou. 1998. On-line learning and stochastic approxima-

tions. In In On-line Learning in Neural Networks. Cambridge
University Press, 9–42.

[3] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen,
Koray Kavukcuoglu, and Pavel Kuksa. 2011. Natural Language
Processing (Almost) from Scratch. J. Mach. Learn. Res. 12 (Nov.
2011), 2493–2537. http://dl.acm.org/citation.cfm?id=1953048.
2078186

[4] Cicero dos Santos and Maira Gatti. 2014. Deep convolutional
neural networks for sentiment analysis of short texts. In Proceed-
ings of COLING 2014, the 25th International Conference on
Computational Linguistics: Technical Papers. 69–78.

[5] Maeve Duggan. 2014. Online harassment. Pew Research Center.
[6] Kunihiko Fukushima. 1980. Neocognitron: A self-organizing neural

network model for a mechanism of pattern recognition unaffected
by shift in position. Biological Cybernetics 36, 4 (1980), 193–202.

[7] Yarin Gal and Zoubin Ghahramani. 2016. A Theoretically
Grounded Application of Dropout in Recurrent Neural Networks.
In Advances in Neural Information Processing Systems 29: An-
nual Conference on Neural Information Processing Systems
2016, December 5-10, 2016, Barcelona, Spain. 1019–1027.

[8] Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep
Convolutional Networks on Graph-Structured Data. CoRR
abs/1506.05163 (2015). arXiv:1506.05163 http://arxiv.org/abs/
1506.05163

[9] Hossein Hosseini, Sreeram Kannan, Baosen Zhang, and Radha
Poovendran. 2017. Deceiving Google’s Perspective API Built for
Detecting Toxic Comments. arXiv preprint arXiv:1702.08138
(2017).

[10] Rie Johnson and Tong Zhang. 2014. Effective use of word order
for text categorization with convolutional neural networks. arXiv
preprint arXiv:1412.1058 (2014).

[11] T.I. Jolliffe. 2002. Principal Component Analysis. Springer.
[12] Yoon Kim. 2014. Convolutional neural networks for sentence

classification. arXiv preprint arXiv:1408.5882 (2014).
[13] Yoon Kim. 2014. Convolutional Neural Networks for Sentence

Classification. CoRR abs/1408.5882 (2014). arXiv:1408.5882
http://arxiv.org/abs/1408.5882

[14] Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Recurrent
Convolutional Neural Networks for Text Classification.. In AAAI,
Vol. 333. 2267–2273.

[15] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86,
11 (Nov 1998), 2278–2324.

[16] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and
Jeff Dean. 2013. Distributed Representations of Words and
Phrases and their Compositionality. In Advances in Neural
Information Processing Systems 26, C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger (Eds.). Curran
Associates, Inc., 3111–3119.

[17] M Ramakrishna Murty, JVR Murthy, and Prasad Reddy PVGD.
2011. Text Document Classification based-on Least Square Sup-
port Vector Machines with Singular Value Decomposition. Inter-
national Journal of Computer Applications 27, 7 (2011).

[18] Jeffrey Pennington, Richard Socher, and Christopher D. Man-
ning. 2014. Glove: Global vectors for word representation. In In
EMNLP.

[19] Xiaojun Quan, Gang Liu, Zhi Lu, Xingliang Ni, and Liu Wenyin.
2010. Short text similarity based on probabilistic topics. Knowl-
edge and information systems 25, 3 (2010), 473–491.

[20] Anand Rajaraman and Jeffrey David Ullman. 2011. Mining of
Massive Datasets. Cambridge University Press. https://doi.org/
10.1017/CBO9781139058452

[21] Ge Song, Yunming Ye, Xiaolin Du, Xiaohui Huang, and Shifu Bie.
2014. Short Text Classification: A Survey. Journal of Multimedia
9, 5 (2014).

[22] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing
Data using t-SNE. Journal of Machine Learning Research 9
(2008), 2579–2605.

[23] Ellery Wulczyn, Nithum Thain, and Lucas Dixon. 2017. Ex
machina: Personal attacks seen at scale. In Proceedings of the
26th International Conference on World Wide Web. International
World Wide Web Conferences Steering Committee, 1391–1399.

[24] Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-
level convolutional networks for text classification. In Advances
in neural information processing systems. 649–657.

[25] Zufan Zhang, Yang Zou, and Chenquan Gan. 2018. Textual senti-
ment analysis via three different attention convolutional neural
networks and cross-modality consistent regression. Neurocomput-
ing 275 (2018), 1407–1415.

6

http://dl.acm.org/citation.cfm?id=1953048.2078186
http://dl.acm.org/citation.cfm?id=1953048.2078186
http://arxiv.org/abs/1506.05163
http://arxiv.org/abs/1506.05163
http://arxiv.org/abs/1506.05163
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1408.5882
https://doi.org/10.1017/CBO9781139058452
https://doi.org/10.1017/CBO9781139058452

	Abstract
	1 Introduction
	2 Convolutional Neural Networks
	2.1 CNN for Text Classification

	3 Bag-of-Words for Text Mining
	4 Experimental Analysis
	5 Conclusions
	References

