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Abstract—The recent technological advancements in cloud
computing and the access in increasing computational power
has led in undertaking the data processing derived by mobile
devices. In particular, when these data are high dimensional
this is indispensable, since the mobile device has to balance
its processing functionalities to additional services. However,
developing efficient algorithms could allow various types of
analysis to be performed locally, avoiding the necessity of a
constantly connected device. In this work, we present a method-
ology that combines lightweight dimensionality reduction and
change detection techniques. The experimental results justify
its impressive performance and subsequently its usefulness in
several tasks.

Index Terms—High Dimensional Data, Data streams, Cumula-
tive Sum, Incremental Principal Component Analysis.

1. Introduction

The recent years, within the field of sensor networks,
various wearable sensors are used to collect human body
information. Furthermore, advances in Artificial Intelligent
and Machine Learning allow data processing [1], [2] in an
attempt to aid the medical treatment, social welfare, sports,
etc. In many cases smartphone devices, having a variety of
built-in sensors are used to collect these data. However, as
the data dimensionality tends to grow, the limited memory
and computational power of mobile devices such as the
smartphones, Raspberry Pi or Unmanned Aerial Vehicle, is
hindering the efficient data processing.

To deal with this problem, the wireless network capabili-
ties of the devices are used and data are processed in remote
servers or more recently in high computational power cloud
infrastructure [3]. Nevertheless, this approach gives birth to
a new series of problems [4], such as network connectivity,
device energy consumption, etc.

In this work, we provide a methodology that fits on the
low memory and computational capabilities of smartphones.
To test our approach, we use the publicly available dataset
“Human Activities and Postural Transitions” (HAPT) [5]
which is a time series dataset characterized by high dimen-
sionality. To this end, we employ an online dimensionality

reduction technique to reduce the original space to an 1-
dimensional space coupled with a lightweight statistical
method for time series analysis. Our aim is to capture in real
time a specific state in the signal every time it is appearing,
using only the smartphone device.

The rest of the paper is structured as follows: In Sec-
tion 2, we provide information regarding the dataset used. In
Section 3, background material for dimensionality reduction
and classification methods are provided. In Section 4, we
present the proposed methodology and the experimental
results. Finally, Section 5 contains concluding remarks and
pointers for future work.

2. Dataset

As a case study to examine our methodology, we use
a multivariant time series dataset [6], constructed using a
series of basic human activities which are obtained using
the sensor signals of a smartphone. To assemble the dataset,
experiments were carried out within a group of 30 volunteers
at the age bracket of 19-48 years. All the participants were
wearing a smartphone (Samsung Galaxy S II) on their waist
during the experiment execution. 3-axial linear acceleration
and 3-axial angular velocity were captured at a constant rate
of 50Hz using the built-in accelerometer and gyroscope.

The sensor signals (accelerometer and gyroscope) were
pre-processed by applying noise filters and then sampled
in fixed-width sliding windows of 2.56 sec and 50% over-
lap (128 readings/window). The sensor acceleration signal,
which has gravitational and body motion components was
separated using a Butterworth low-pass filter into body
acceleration and gravity. The gravitational force is assumed
to have only low frequency components, therefore a filter
with 0.3 Hz cutoff frequency was used. From each window, a
vector of 561 features was obtained by calculating variables
from the time and frequency domain.

3. Background Methods

In this section, we briefly review the basic tools used
in the proposed methodology. In particular, we present the



Incremental Principal Component Analysis (IPCA) [7] for
the dimensionality reduction task and the Cumulative Sum
(CuSum) algorithm [8] for the online change detection.

3.1. Incremental Principal Components Analysis

The typical computational approach to PCA requires
all the data input to be available in order to compute
the eigenvalues and eigenvectors of the sample covariance
matrix, and thus it belongs to the category of batch methods.
This approach is not feasible when the data are incremen-
tally derived from an on-line stream. Thus, an incremental
method is required to estimate the principal components for
observations arriving sequentially.

This can be achieved by updating the principal compo-
nents for each arriving observation vector, while avoiding
to estimate the covariance matrix as an intermediate result.
Here, for that purpose we employ the Candid Covariance-
free IPCA (CCIPCA) method [7], which is based on the
works of Oja and Karhunen [9] and Sanger [10]. A short
description of the method follows.

Let d1, d2, . . . be the sample vectors that are acquired
sequentially at each time point and let u1 be the first prin-
cipal component. Each dn, n = 1, 2, . . ., is a a-dimensional
vector, where each dimension corresponds to a sensor signal
for the case at hand. Without loss of generality, we can
assume that dn has a zero mean, since the mean may be
incrementally estimated and subtracted out. Then, the n-th
step estimate un1 of u1 is given by
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where (n−1)/n is the weight for the last estimate and 1/n
is the weight of the new data, while the one dimensional
projection yn onto un1 is given by

yn = un1dn.

The positive parameter l is called the amnesic parameter.
With the presence of l, larger weight is given to new samples
and the effect of old samples will gradually fade out. Finally,
to begin the iteration, we set u01 = d1, the first direction of
data spread. A mathematical proof of the convergence of
CCIPCA can be found in [11].

3.2. Cumulative Sum

The Cumulative Sum (CuSum) is a change detection
algorithm that can be used for off-line or on-line change
detection. The CuSum has been firstly proposed in [8]. In
this work, we utilize the on-line version of the algorithm.

To describe the functionality of the algorithm, we con-
sider a sequence of independent random variables yn, which
correspond to a signal for various discrete time instances
n, with a probability density pθ(y), which depends only to
the parameter θ. To capture the change of the signal at an
unknown time instance t0, the parameter θ have to change
from the initial value θ0 (θ is equal to θ0) to θ1 where

θ0 6= θ1. The approximation of these parameters that can be
addressed using a training set of sample data.

More specifically, we assume the following hypotheses
concerning the parameter θ:

H0 : θ = θ0

H1 : θ = θ1 (1)

In the problem considered here, the signal samples are
captured by the sensors of the smartphone in real time
and the proper hypotheses must be computed. When the
decision is continuously in favour of hypothesis H0, there
is absence of signal change, while a decision in favour of
H1 corresponds to signal samples that indicate a change.

In this paper, the following notation will be used. Let

Sn =

n∑
i=1

si, where si = ln
pθ1(yi)

pθ0(yi)
(2)

is the log-likelihood ratio for the observations from yi to
yn, where n is the current time instant and refer to si as
sufficient statistic. Considering the particular case where
the distribution is Gaussian, with µ the mean value and
σ the constance variance, when the changing parameter θ
corresponds to µ. The probability density is denoted as

pθ(y) =
1

σ
√

(2π)
exp−(y−θ)2/2σ2

(3)

and the sufficient statistic si as

si =
θ1 − θ0
σ2

(yi −
θ0 + θ1

2
). (4)

To detect the change, at each instant time, the following
decision rule is utilized:

gn = Sn − µn ≥ h, where µn = min
1≥j≥n

Sj . (5)

The stopping time, denoted as ta, is

ta = min {n : gn ≥ h} (6)

and can be rewritten as

ta = min {n : Sn ≥ µn + h}. (7)

The above decision rule compares the cumulative sum
Sn and the adaptive thresholding µn+h, since the µn keeps
memory of the past observations whereas, the parameter
h must be specified. The parameter h is critical, affects
the decision rule threshold and therefore the signal change
correctness.

4. Proposed Method and Experimental Results

In this section, we describe the technical details of the
proposed methodology and we examine its efficiency on
processing the publicly available dataset “Human Activities
and Postural Transitions” (HAPT) to detect the Lying state
from the different walking states. There are several activities
categorized in the dataset which are further discriminated
as active or non active. Here we are interested in detecting



changes between these two different states. As a follow up
on our previous work on fall detection [2], [12] we are
particularly interested in significant changes of the body
orientation. Detecting every single one of such changes in a
time series that correspond to a time window could further
help on measuring walking stability or danger of accident
occurrence. In addition such measurements are of great use
in athletic exercise applications that are extremely popular
in recent wearable accessories.

4.1. Proposed Method

To begin with, we apply the Principal Components
Analysis method on the train set by projecting it to the
First Principal Component. The significance of this process
is dual; firstly, we produce an initial eigenspace, which
is used as an initialization for the Incremental Principal
Components Analysis method and secondly we calculate
the one dimensional mean values of the two classes that are
later required for our hypotheses testing. The mean value
of Lying state denote the signal change parameter θ1, while
the mean value of the other active state correspond to θ0.

Subsequently, for the test dataset we employ Incremen-
tal Principal Components Analysis to sequentially reduce
the dimensionality of each data sample from the 561-
dimensional space to an 1-dimensional space. Then using
CUSUM algorithm decision rule gn we aim to detect the
lying states in the dataset. Notice that there is no need for
any intermediate calculation of the covariance matrix, while
as the projected sample is 1-dimensional there is no need
to employ modifications of the CUSUM algorithm or any
other more complex change detection algorithms that are
applicable in multivariate time series.

−20 −15 −10 −5 0 5 10
−4

−2

0

2

4

6

8

10

12

Component 1

C
o
m

p
o
n
e
n
t 
2

 

 

Walking

Walking Upstairs

Walking Downstairs

Lying

Figure 1. The training data transformed by PCA into 2-dimensional space.

4.2. Experimental Results

Firstly, we make an attempt to visually investigate the
effect of the dimensionality reduction on the data structure.
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Figure 2. The training data transformed by PCA into 1-dimensional space.
Different colors denote the four different states present in the dataset.

For this purpose we employ the 2-dimensional (see Figure 1)
and 1-dimensional (see Figure 2) projection onto the first
two and the first Principal Components, respectively. In
Figure 2 the sample of each different state has been grouped
together and presented in the same time frame. As shown
in both cases the class separability is exposed, while the
presence of possible outliers is also detected.
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Figure 3. The test dataset transformed by IPCA into 1-dimensional space
maintaining. The red dots represent the CUSUM algorithm triggering.

We apply the proposed methodology, using the default
amnesic parameter l = 2 for the CCIPCA method [7] and
the CUSUM parameter h = 0.2, while to further investigate
the robustness of CUSUM we use different values of h
parameter. The performance of the proposed methodology is
illustrated in Figure 3, where the 1-dimension test data trans-
formed using IPCA is depicted. Each two consecutive green
vertical lines represent the Lying state in the time series
while red dots represent the exact times that the algorithm



detected the change to the new state. As shown every Lying
state is recognized every single time. We indicate that during
this process, the CUSUM stops triggering and capture the
next Lying without the need of any reset. In Figure 4, we
present an example of the CUSUM decision function for the
test sample, where we observe how the decision function is
fast approaching zero values.

To examine the sensitivity of the proposed approach we
perform a series of experiments using different values for
the h parameter. In Table 1, we present the ratio of detected
changes to the actual Lying states. We observe that the
performance is only affected for values higher than 0.4.

TABLE 1. LYING STATE DETECTION USING DIFFERENT CUSUM
PARAMETER h

Parameter h

0.02 0.1 0.2 0.3 0.4 0.5

Lying state
Detected 16/16 16/16 16/16 16/16 16/16 11/16
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Figure 4. The CUSUM decision function of data test sample. The vertical
lines represent the real Lying state and the red dots the CUSUM triggering.

5. Conclusion

In this work, we present a methodology for change
detection in multidimensional mobile sensors data. We use
the publicly available HAPT dataset, where all the changes
from active states to the Lying state are accurately detected.
We focus on computational efficiency by incorporating an
online dimensionality reduction approach combined with a
lightweight change detection algorithm. In our further work,
we intend to release an open source implementation of
this approach for low computational power devices such as
smartphones, Raspberry Pi, Unmanned Aerial Vehicle, etc.
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